
Visualising the Resolution Revolution of Electron Microscopy

Tianyi Shi

2020-02-23

Contents
1 Getting All the PDB Files 1

2 Parsing PDB files 2

3 Data Analysis with R 3
3.1 Load Data . 4
3.2 Tidying Data . 4
3.3 Plotting . 5

Last week I wrote an essay on electron microscopy (EM) and X-ray crystallography. I originally thought
X-ray’s superiority in resolution has always been unrivalled, but the situation is changing—the best resolution
achived by cryo-EM is now comparable with the average/median resolution achived by X-ray crystallography,
which is around 2.3Å (this resolution allows for unambiguous identification of most amino acid residues in
proteins). Recently it’s even reported that 1.75Å resolution has been achieved using cryo-EM, which really
struck me. Thus, I was motivated to visualise the resolution revolution of cryo-EM. This article is a record of
how I downloaded all PDB files from the protein data bank and did some simple analyses on them.

1 Getting All the PDB Files

All the PDB files are available via PDB’s FTP server. Simply cd to a directory and use wget to download all
of them.
mkdir pdb; cd pdb; mkdir compressed decompressed; cd compressed
wget ftp://ftp.wwpdb.org/pub/pdb/data/structures/all/pdb/*

Depending on the traffic, The first download will take 2~4 days. After the first download, to sync the local
database with the FTP server, add the -N option to wget (essentially this means downloading “new” files
only).

The *.ent.gz files downloaded are compressed. You can use gunzip to decompress them to ready-to-use
*.ent files (which is written in PDB format), but that will remove the *.gz files, which is inconvenient if
you want to keep your database in sync with the remote. Use gzcat (or equivalently gunzip -c) instead to
preserve the *.gz files while decompressing:
find . -name "*.gz" | xargs -I{} -n1 bash -c '
src={}; dst=../decompressed/$(basename ${src%*.gz})
[-f $dst] && echo "$dst already exists, skipping..." || (gzcat -cv $src > $dst)'

You can monitor the progress from the verbose output of gzcat:

./pdb1byf.ent.gz: 78.1%

./pdb1byg.ent.gz: 76.3%

1

https://www.rcsb.org
https://www.rcsb.org/pages/download/ftp

./pdb1byh.ent.gz: 77.3%

./pdb1byi.ent.gz: 75.2%

...

2 Parsing PDB files

The decompressed *.ent files are in accordance with the PDB format specification, which is accessible here.
Many ready-to-use PDB parsers are available, such as in BioPython’s PDB module. However, I am only
interested in three variables: experimental technique, resolution and date, and it would be a overkill to
parse entire PDB files using those standard parsers. Instead, I manually wrote a parser (with python) with
reference to the format specification:
#!/usr/bin/env python3.8
import sys
for fn in sys.argv[1:]:

with open(fn) as f:
HEAD = f.readline()
date, id = HEAD[50:59], HEAD[62:66]
while True:

line = f.readline()
if line[:6] == 'EXPDTA':

method = line[10:].rstrip()
if line[:6] == 'REMARK':

if line[11:22] == 'RESOLUTION.':
resolution = line[23:30] if line[31:40] == 'ANGSTROMS' else 'NA'
break

print(','.join([id, date, resolution, method]))

Then I parsed the data, 100 files at a time (took 25 min in total):
echo "id,date,resolution,method" > date_method_resolution.csv
find decompressed -name '*.ent' | xargs -n100 ./parse >> date_method_resolution.csv

To see whether it is Python that causes this operation slow, I used Go to rewrite the parser:

Expand to view
package main

import (
"bufio"
"fmt"
"os"
"strings"

)

func check(e error) {
if e != nil {

panic(e)
}

}

func main() {

for _, arg := range os.Args[1:] {

2

http://www.wwpdb.org/documentation/file-format
https://biopython.org/wiki/The_Biopython_Structural_Bioinformatics_FAQ

f, err := os.Open(arg)
check(err)

b1 := make([]byte, 81)
f.Read(b1)
check(err)
fmt.Print(string(b1[50:59]) + "," + string(b1[62:66]) + ",")

scanner := bufio.NewScanner(f)
var method string
var resolution string
for scanner.Scan() {

var line string
line = scanner.Text()
if line[:6] == "EXPDTA" {

method = strings.TrimSpace(line[10:])
}
if line[:6] == "REMARK" {

if line[11:22] == "RESOLUTION." {
if line[31:40] == "ANGSTROMS" {

resolution = strings.TrimSpace(line[23:30])
} else {

resolution = "NA"
}
break

}
}

}
fmt.Println(resolution + "," + method)

if err := scanner.Err(); err != nil {
panic(err)

}
}

}

And it turns out that Go achived a similar speed as Python, meaning the speed is limited by the file system
I/O instead.

The csv file looks like this:

id	date	resolution	method
100D	05-DEC-94	1.90	X-RAY DIFFRACTION
101D	14-DEC-94	2.25	X-RAY DIFFRACTION
101M	13-DEC-97	2.07	X-RAY DIFFRACTION

3 Data Analysis with R

3.0.1 Prerequisites

First, load the required packages:

3

library(tidyverse)

-- Attaching packages ------------ tidyverse 1.3.0 --

v tidyr 1.0.2 v dplyr 0.8.4
v readr 1.3.1 v stringr 1.4.0
v purrr 0.3.3 v forcats 0.4.0

-- Conflicts --------------- tidyverse_conflicts() --
x dplyr::filter() masks plotly::filter(), stats::filter()
x dplyr::lag() masks stats::lag()
library(lubridate)

##
Attaching package: 'lubridate'

The following object is masked from 'package:base':
##
date
library(scales)

##
Attaching package: 'scales'

The following object is masked from 'package:purrr':
##
discard

The following object is masked from 'package:readr':
##
col_factor

3.1 Load Data

Parse the csv data file with readr::read_csv(). It is a good practice to specify the data type of each column
(c means ‘character’, d means ‘double precision floating number’). Note the date column cannot be directly
parsed, and it should be read as a character column and parsed by lubridate::date() in a separate step.
The entries without resolution data are filtered out.
pdb <- read_csv('./src/pdb/date_method_resolution.csv',

col_types = 'ccdc') %>%
mutate(date = dmy(date)) %>%
filter(!is.na(resolution))

3.2 Tidying Data

Note that some entries have more than one experimental methods, and individual columns are separated by
semicolons, meaning there could be something like X-RAY DIFFRACTION; ELECTRON MICROSCOPY; SOLUTION
NMR in the method column. The following code convert such entries into entries each with the first method of
the original, dropping the rest:
single_method <- pdb %>% filter(!str_detect(method, ';'))
multiple_method <- pdb %>% filter(str_detect(method, ';'))

4

pdb <- bind_rows(single_method, do.call(bind_rows,
lapply(1:length(multiple_method[[1]]),function(i) {

original_row = multiple_method[i,]
mutate(original_row, method=str_split(original_row[['method']], '; ')[[1]][1])
}

)
))

You can also use a for loop (shown below) to bind new rows to pdb, but this is noticeably slower than the
lapply() and do.call() equivalent (shown above). In R, use those vectorised and highly efficient functions
whenever possible (they should be able to replace almost all for loops).
pdb <- single_method
for (i in 1:length(multiple_method[[1]])) {

original_row = multiple_method[i,]
bind_rows(pdb, mutate(original_row, method=str_split(original_row[['method']], '; ')[[1]][1]))

}

3.3 Plotting

I used the ggplot2 package for plotting.

3.3.1 Plot Setup

ggplot2::theme_set() sets global themes for all plots.

ggplot2 doesn’t have a built-in reverse_log10 scaling, which will be needed, so I used scales::trans_new()
to make this.
theme_set(

theme_bw()+
theme(

text = element_text(family = 'Courier'),
plot.title = element_text(hjust = 0.5)

)
)

reverselog_trans <- function(base = exp(1)) {
trans <- function(x) -log(x, base)
inv <- function(x) base^(-x)
trans_new(paste0("reverselog-", format(base)), trans, inv,

log_breaks(base = base),
domain = c(1e-100, Inf))

}

3.3.2 Median Resolution of Different Methods Over Time

This plot shows the median resolution of different structure-solving methods every year. Size represents
log(number_of_cases).
pdb %>% mutate(year = year(date)) %>%

group_by(year, method) %>%
summarise(

5

median = median(resolution, na.rm = TRUE),
n = n()) %>%

mutate(alpha = ifelse(method=='X-RAY DIFFRACTION', 'A', 'B')) %>%
ggplot(aes(year, median, color=method, size=log(n), alpha=alpha))+
geom_point()+
scale_y_continuous(breaks = seq(0,25,5))+
scale_alpha_discrete(range=c(0.7, 0.9), guide=FALSE)+
labs(title='Median Resolution of Different Methods Over Time')+
scale_color_brewer(palette = 'Set2')

3.3.3 All Cases of X-Ray and EM Structures

These plots show the resolution and date of all cases as dots of EM and X-Ray Crystallography, respectively.
Linear fits are added.
ggplot(filter(pdb, method =='ELECTRON MICROSCOPY', date>ymd(20000101), resolution < 20), aes(date, resolution))+

geom_point(alpha=0.1)+
labs(title = 'Resolution of EM Structures Over Time')+
scale_y_continuous(limits = c(0, 20), breaks = c(2, 3, 4, seq(0, 20, 5)), minor_breaks = c(7.5, 12.5, 17.5, seq(2, 5, 0.5)))+
geom_smooth(method = 'lm')

6

ggplot(filter(pdb, method =='X-RAY DIFFRACTION'), aes(date, resolution))+
geom_point(alpha=0.1)+
scale_y_continuous(limits = c(0, 10), breaks = seq(0, 10, 2), minor_breaks = c(seq(1,9,2), seq(1,3,0.1)))+
geom_smooth(method = 'lm')+
labs(title = 'Resolution of X-Ray Crystallography Structures Over Time')

7

EM structures show a strong trend of improvement in resolution over time. For X-Ray crystallography,
however, although the maximum resolution improves over time, the number of published low-resolution
structures also increases, making the median virtually unchanged over time.

3.3.4 Boxplots

Boxplots summarise the resolution, grouped by year, of different structural biology methods. Here the
reverse_log10 scale is used, so that lower resolution values correspond to ‘high positions’ in the plot, which
is more intuitive:
boxPlotScale = scale_y_continuous(

minor_breaks = c(1:10, seq(10, 100, 10), seq(0.1, 1, 0.1)),
breaks=c(0.5, 1, 2, 3, 5, 10, 20, 60),
trans=reverselog_trans(10))

ggplot(mutate(pdb, year = year(date)), aes(year, resolution, group=year))+
geom_boxplot()+
facet_wrap(~method)+
boxPlotScale+
scale_x_reverse()+
coord_flip()+
labs(title = 'Comparison of Resolution of Different Methods Over Time')

8

To compare EM and X-ray crystallography:
ggplot(mutate(pdb, year = year(date)) %>% filter(method %in% c('X-RAY DIFFRACTION', 'ELECTRON MICROSCOPY')), aes(year, resolution, group=year))+

geom_boxplot()+
facet_wrap(~method, ncol = 1)+
boxPlotScale+
labs(title = 'Comparison of Resolution of EM and X-Ray Crystallography Over Time')

9

10

	Getting All the PDB Files
	Parsing PDB files
	Data Analysis with R
	Load Data
	Tidying Data
	Plotting

